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Abstract

We study surfaces whose twistor lifts are harmonic sections, and characterize these surfaces in terms of their second fundamental
forms. As a corollary, under certain assumptions for the curvature tensor, we prove that the twistor lift is a harmonic section if and
only if the mean curvature vector field is a holomorphic section of the normal bundle. For surfaces in four-dimensional Euclidean
space, a lower bound for the vertical energy of the twistor lifts is given. Moreover, under a certain assumption involving the mean
curvature vector field, we characterize a surface in four-dimensional Euclidean space in such a way that the twistor lift is a harmonic
section, and its vertical energy density is constant.
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1. Introduction

For an oriented surface in an oriented four-dimensional Riemannian manifold, the twistor lift, which is a smooth
map from the surface to the twistor space, is defined [12]. It is important to study these surfaces by their twistor
lifts. In particular, a surface is said to be superminimal if its twistor lift is horizontal. For superminimal surfaces,
see [5,12,13,18], for example. On the twistor space, an almost complex structure can be defined [1,12]. Then, surfaces
with holomorphic twistor lifts relative to the almost complex structure are also considered (see [6,12], for example).
Considering the canonical metrics of twistor spaces, surfaces whose twistor lifts are harmonic maps are studied (see [7,
11], for example). Harmonic maps are stationary points of the energy functionals between Riemannian manifolds.
For sections with unit lengths, we consider the energy functional restricted to the space of all such sections and its
stationary points, which are called harmonic sections (see Section 2). If a smooth section is a harmonic map in the
usual sense, then it is a harmonic section. In this paper, we study surfaces whose twistor lifts are harmonic sections.

We characterize surfaces whose twistor lifts are harmonic sections in terms of their second fundamental forms
(Theorem 5.2). The twistor lifts of the superminimal surfaces are harmonic sections. In addition, if a superminimal
surface is compact, its twistor lift attains the minimum value of a restricted energy functional. Twistor lifts of surfaces
with parallel second fundamental forms are also harmonic sections. Under certain assumptions for the curvature tensor,
we prove that the twistor lift is a harmonic section if and only if the mean curvature vector field is a holomorphic
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section of the normal bundle (Corollary 5.4). The usual harmonicity of twistor lifts for surfaces in four-dimensional
unit spheres are studied in [11]. In [7], Lagrangian surfaces in complex projective planes with harmonic twistor lifts
are studied.

The vertical component of the energy of a section is called the vertical energy. By the definition of superminimality,
a surface is superminimal if and only if the vertical energy of the twistor lift vanishes. Hence, it is natural to consider
the following problem : Assume that the ambient space does not admit any compact superminimal surface. Find a
geometric constant C > 0 such that

(the vertical energy of the twistor lift) ≥ C,

and characterize the equality case. As a solution to this problem, we provide an answer for the case where the
ambient space is four-dimensional Euclidean space (Theorem 6.1). Moreover, under an assumption involving the
mean curvature vector field, we characterize a surface in four-dimensional Euclidean space such that the twistor lift is
a harmonic section, and its vertical energy density is constant (Theorem 6.4).

In Section 2, we study sections of the sphere bundles and harmonic sections for Riemannian vector bundles. We
recall the definition of twistor spaces and twistor lifts of surfaces in Section 3. In Section 4, we obtain the fundamental
formulae related to twistor lifts. Surfaces whose twistor lifts are harmonic sections are considered in Section 5. In the
last section, we study the energy density of twistor lifts for surfaces in Euclidean space.

2. Sections of the sphere bundles and harmonic sections

Throughout this paper, all manifolds and maps are assumed to be smooth. Let E be a Riemannian vector bundle
with a fiber metric gE and a metric connection ∇

E over an n-dimensional Riemannian manifold (M, g). We denote
the tangent bundle of a manifold P by T P . Let K E

: T E → E be the connection map with respect to ∇
E . The space

of all sections of E is denoted by Γ (E). The canonical metric G on E is defined by

G(ζ, ζ ) = g(p∗(ζ ), p∗(ζ )) + gE (K E (ζ ), K E (ζ ))

for ζ ∈ T E , where p : E → M is the bundle projection. Note that p : (E, G) → (M, g) is a Riemannian submersion
with totally geodesic fibers (see [1,20]). We call ker p∗ (resp. ker K E ) the vertical (resp. horizontal) subbundle of
T E . For ξ ∈ Γ (E), its vertical lift is denoted by ξv . For a vector field X on M , Xh stands for the horizontal lift
of X . We note that K E (ξv) = ξ and K E (ξ∗(X)) = ∇

E
X ξ for ξ ∈ Γ (E) and X ∈ T M . Let ∇

G (resp. ∇) be the
Levi-Civita connection of G (resp. g) on E (resp. M). The curvature form of ∇

E is denoted by RE . We define R̂E
ξ,η

for ξ, η ∈ Γ (E) by

g(R̂E
ξ,η X, Y ) = gE (RE (X, Y )ξ, η),

where X, Y ∈ T M . The following equations hold at u ∈ E (see [3]):

∇
G
Xh Y h

= (∇X Y )h
−

1
2
(RE (X, Y )u)v,

∇
G
Xh ξ

v
=

1
2
(R̂E

u,ξ X)h
+ (∇E

X ξ)v,

∇
G
ξv Y h

=
1
2
(R̂E

u,ξ Y )h,

∇
G
ξvζ

v
= 0

for all ξ , ζ ∈ Γ (E) and X , Y ∈ Γ (T M). Set

U E (=U (E)) := {u ∈ E | gE (u, u) = 1}.

The set of all sections ξ ∈ Γ (E) such that ξ(M) ⊂ U E is denoted by Γ (U E). A unit normal vector field η on U E in
E is the vertical vector such that ηu = uv for u ∈ U E . For ξ ∈ E , we define the tangential lift ξ t of ξ at u ∈ U E by
ξ t

= ξv
− gE (ξ, u)ηu . The tangential lift of a section ξ ∈ Γ (E) is the vertical vector field ξ t on U E whose value at

u ∈ U E is the tangential lift of ξ(p(u)). Let A be the shape operator of U E in E with respect to η.
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Lemma 2.1. For any vertical vector field U and any horizontal vector field X which are tangent to U E, we have
A(U ) = −U and A(X) = 0.

Proof. We may assume that U is the tangential lift ξ t of ξ ∈ Γ (E) and X is the horizontal lift Y h of Y ∈ Γ (T M).
Fix u ∈ U E and take a vertical curve ū : I → U E defined on an open interval I containing 0 such that u = ū(0) and
ū′(0) = (ξ t )u . We have

A(ξ t )u = −(∇G
ū′(0)η)u = −

d
dt

ū(t)v
∣∣∣∣
t=0

= −(ξ t )u .

Similarly, take a horizontal curve ū such that u = ū(0) and ū′(0) = (Y h)u . We obtain

A(Y h)u = −(∇G
ū′(0)η)u = −(∇E

(p◦ū)′(0)ū(t))vu = 0. �

Let ∇̄
G be the Levi-Civita connection of U E relative to the induced metric of (E, G).

Lemma 2.2. For ξ , ζ ∈ Γ (E) and X, Y ∈ Γ (T M), at u ∈ U E, we have

∇̄
G
Xh Y h

= (∇X Y )h
−

1
2
(RE (X, Y )u)t ,

∇̄
G
Xh ξ

t
= (∇E

X ξ)t
+

1
2
(R̂E

u,ξ X)h,

∇̄
G
ξ t Y h

=
1
2
(R̂E

u,ξ Y )h,

∇̄
G
ξ t ζ

t
= −gE (ζ, u)ξ t .

Proof. We prove only the last equation, since A(Z) = 0 for any horizontal vector Z . Take a vertical curve
ū : I → U E , defined on an open interval I containing 0 such that u = ū(0) and ū′(0) = (ξ t )u . Since
ζ t

u = ζ v
u − gE (ζ(p(u)), u)uv , we have

(∇̄G
ξ t ζ

t )u = ∇
G
ū′(0)ζ

t
+ Gu(ξ t , ζ t )ηu

=
d
dt

(ζ v
ū(t) − gE (ζ(p(ū(t))), ū(t))ū(t)v)

∣∣∣∣
t=0

+ Gu(ξ t , ζ t )ηu

= −gE (ζ(p(u)), u)
d
dt

ū(t)v
∣∣∣∣
t=0

= −gE (ζ(p(u)), u)ξ t
u,

where we use Lemma 2.1. �

We define H∇
E

by

H∇
E
(X, Y )ξ := −∇

E
X ∇

E
Y ξ + ∇

E
∇X Y ξ

for X , Y ∈ Γ (T M) and ξ ∈ Γ (E). With respect to the Levi-Civita connections ∇ and ∇̄
G , from Lemma 2.2, we

obtain

Lemma 2.3. For ξ ∈ Γ (U E), we have

∇̄
G
X ξ∗(Y ) − ξ∗(∇X Y ) =

1
2
(R̂E

u,∇E
Y ξ

X)h
+

1
2
(R̂E

u,∇E
X ξ

Y )h
− (H∇

E
(X, Y )ξ)t

−
1
2
(RE (X, Y )u)t

for all X, Y ∈ Γ (T M) at x ∈ M, where u = ξ(x).

The rough Laplacian 1̄∇
E

of ∇
E is defined by

1̄∇
E
(ξ) =

n∑
i=1

H∇
E
(ei , ei )(ξ) = −

n∑
i=1

(∇E
ei

∇
E
ei

ξ − ∇
E
∇ei ei

ξ)
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for ξ ∈ Γ (E), where e1, . . . , en is an orthonormal frame of (M, g). The torsion τ(ϕ) of a smooth map ϕ : M1 → M2
between Riemannian manifolds (M1, g1) and (M2, g2) is defined by

τ(ϕ) =

l∑
i=1

(∇2
ei
ϕ∗(ei ) − ϕ∗(∇

1
ei

ei )),

where e1, . . . , el is an orthonormal frame of (M1, g1) and ∇
i is the Levi-Civita connection of (Mi , gi ) (i = 1, 2). By

Lemma 2.3, we have

Lemma 2.4. The torsion τ(ξ) of ξ ∈ Γ (U E) is given by

τ(ξ) =

n∑
i=1

(R̂E
u,∇E

ei
ξ
ei )

h
− (1̄∇

E
(ξ))t

at x ∈ M, where u = ξ(x) and e1, . . . , en is an orthonormal frame of (M, g).

We assume that M is compact. Let E be the energy functional defined on the space of all smooth maps from M to
U E . For a smooth section ξ ∈ Γ (U E), the energy E(ξ) is given by

E(ξ) =
n
2

Vol(M) +
1
2

∫
M

‖∇
Eξ‖

2dvg,

where dvg denotes the volume element of (M, g), and Vol(M) is the volume of (M, g). We say that ξ ∈ Γ (U E) is a
harmonic section if ξ is a stationary point of E |Γ (U E). Obviously, if a smooth section is a harmonic map in the usual
sense, then it is a harmonic section. The following fact is proved in [23].

Lemma 2.5. A section ξ ∈ Γ (U E) is a harmonic section if and only if the equation

1̄∇
E
(ξ) = ‖∇

Eξ‖
2ξ (2.1)

holds.

The Eq. (2.1) makes sense for noncompact manifolds. Therefore, we also say that ξ ∈ Γ (U E) is a harmonic
section if ξ satisfies (2.1) for noncompact cases. We see that ξ ∈ Γ (U E) is a harmonic section if and only if

(1̄∇
E
(ξ))t

= 0 (2.2)

on ξ(M). In the case where E = T M , the harmonic sections are called harmonic vector fields. For harmonic vector
fields, we refer to [14,22,23]. Note that submanifolds with harmonic sections are studied in [15,16].

3. Twistor spaces over four-dimensional Riemannian manifolds and twistor lifts of surfaces

In this section, we recall the twistor space over an oriented four-dimensional Riemannian manifold, and the twistor
lift of a surface (see [1,9,12], for example). Note that the hyperbolic twistor spaces over pseudo-Riemannian manifolds
with neutral metrics are also studied (see [2,4], for example). Let (M̃, g̃) be an oriented four-dimensional Riemannian
manifold. The Hodge star operator is denoted by ∗. Since ∗

2
= id on the space of 2-forms Λ2(M̃), we have

Λ2(M̃) = Λ2
+(M̃) ⊕ Λ2

−(M̃),

where Λ2
±(M̃) = {ω ∈ Λ2(M̃) | ∗ω = ±ω}. We choose an orthonormal frame e1, . . . , e4 of M̃ defining the orientation

of M̃ . Let ω1, . . . , ω4 be the dual frame of e1, . . . , e4. We define the fiber metric ĝ of Λ2(M̃) by

ĝ(ωi
∧ ω j , ωk

∧ ωl) =
1
2

∣∣∣∣ g̃(ωi , ωk) g̃(ωi , ωl)

g̃(ω j , ωk) g̃(ω j , ωl)

∣∣∣∣ .
Set

s1 := ω1
∧ ω2

− ω3
∧ ω4,

s2 := ω1
∧ ω3

− ω4
∧ ω2,

s3 := ω1
∧ ω4

− ω2
∧ ω3.
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Then s1, s2, s3 is an orthonormal frame of Λ2
−(M̃). We define Ki : T M̃ → T M̃ by g̃(Ki (X), Y ) = 2ĝ(si , X#

∧ Y #)

and set Ωi (X, Y ) = g(Ki (X), Y ) for X, Y ∈ T M̃ , where X# stands for the metric dual 1-form of X ∈ Γ (T M̃). Then
we have K1(e1) = e2, K1(e3) = −e4, and so on. For local calculations, we need the following table:

e1 e2 e3 e4
K1 e2 −e1 −e4 e3
K2 e3 e4 −e1 −e2
K3 e4 −e3 e2 −e1

Moreover, we see that −Ωi ∧ Ωi = ω1
∧ · · · ∧ ω4 for i = 1, 2, 3. The endomorphism bundle of the tangent bundle

T M̃ is denoted by End(T M̃). Let Q be the vector subbundle of End(T M̃), whose local triviality is given by K1, K2,
K3. Note that K2 K1 = K3, and Q is a parallel subbundle in End(T M̃) with respect to the connection induced by the
Levi-Civita connection ∇̃ of M̃ . We use the same letter ∇̃ for the connection of End(T M̃) induced by ∇̃. The twistor
space Z over M̃ can be defined as the unit sphere bundle U Q of Q, where the fiber metric of Q is normalized such
that ‖K1‖

2
= ‖K2‖

2
= ‖K3‖

2
= 1. The bundle projection p : Z → M̃ and the Levi-Civita connection ∇̃ on M̃

induce the decomposition

TZ = T hZ ⊕ T vZ

into the horizontal subbundle T hZ and the vertical subbundle T vZ (see Section 2). On the twistor space Z , an
almost complex structure JZ is defined by JZ (X) = (J (p∗(X)))h

J for all horizontal vectors X at J ∈ Z and
JZ (V ) = J v(V ) for all vertical vectors V , where J v is the canonical complex structure on each fiber ' S2(1) (=the
two-dimensional unit sphere). We consider the canonical metric on Z .

Let f : (M, g) → (M̃, g̃) be an isometric immersion from an oriented two-dimensional Riemannian manifold
(M, g) into an oriented four-dimensional Riemannian manifold (M̃, g̃). The Levi-Civita connections of g and g̃ are
denoted by ∇ and ∇̃. Let T ⊥M be the normal bundle of f and ∇

⊥ the normal connection of T ⊥M . Using an
orthonormal frame e1, e2, e3, e4 adapted to the orientation of M̃ , such that e1, e2 defines the orientation of M and
e3, e4 are normal to M , we define J : T M → T M by J (e1) = e2 and J (e2) = −e1, and J⊥

: T ⊥M → T ⊥M by
J⊥(e3) = −e4, and J⊥(e4) = e3. It is easy to see that ∇ J = 0 and ∇

⊥ J⊥
= 0. We set

J̃ (X) := J (X) and J̃ (ζ ) := J⊥(ζ )

for X ∈ T M and ζ ∈ T ⊥M . Then J̃ is a section of U ( f # Q) (= f #(Z)) and J̃ is called the twistor lift of M . Hereafter,
for simplicity, we often omit the symbol “ f ” for induced objects of the immersion f , if there is no confusion.

4. Fundamental formulae for surfaces in four-dimensional manifolds related to twistor lifts

In this section, we prepare several fundamental formulae for surfaces in four-dimensional manifolds. Let (M, g)

be an oriented surface in an oriented, four-dimensional Riemannian manifold (M̃, g̃). Let α and A be the second
fundamental form and the shape operator of M respectively. The mean curvature vector of M is denoted by H . We
define ∇

′α by

(∇ ′

Xα)(Y, Z) = ∇
⊥

X α(Y, Z) − α(∇X Y, Z) − α(Y, ∇X Z)

for all X , Y , Z ∈ Γ (T M). Let R̃, R and R⊥ be the curvature forms of ∇̃, ∇ and ∇
⊥, respectively. Then the following

equations hold

g̃(R̃(X, Y )Z , W ) = g(R(X, Y )Z , W ) + g̃(α(X, Z), α(Y, W )) − g̃(α(X, W ), α(Y, Z)), (4.1)

g̃(R̃(X, Y )Z , ξ) = g̃((∇ ′

Xα)(Y, Z), ξ) − g̃((∇ ′

Y α)(X, Z), ξ), (4.2)

g̃(R̃(X, Y )ξ, ζ ) = g̃(R⊥(X, Y )ξ, ζ ) + g(Aξ X, Aζ Y ) − g(Aξ Y, Aζ X) (4.3)

for all X , Y ∈ T M and ξ , ζ ∈ T ⊥M . If e1, e2, e3, e4 is an orthonormal frame adapted to the orientation of M̃ such
that e1, e2 defines the orientation of M and e3, e4 are normal to M , then we have J̃ = f #(K1). Set I = f #(K2) and
K = f #(K3) ∈ Γ (U ( f # Q)).
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Lemma 4.1. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then,
we have

∇̃X J̃ = g̃(α(X, Je1) − J⊥α(X, e1), e3)I + g̃(α(X, Je1) − J⊥α(X, e1), e4)K

for all X ∈ T M.

Proof. We have

∇̃X J̃ =
1
4

g̃(∇̃X J̃ , I )I +
1
4

g̃(∇̃X J̃ , K )K

=
1
4

{
2∑

i=1

g̃((∇̃X J̃ )(ei ), I ei )I +

4∑
j=3

g̃((∇̃X J̃ )(e j ), I e j )I

+

2∑
i=1

g̃((∇̃X J̃ )(ei ), K ei )K +

4∑
j=3

g̃((∇̃X J̃ )(e j ), K e j )K

}

=
1
4
{g̃(α(X, Je1) − J⊥α(X, e1), e3)I + g̃(α(X, Je2) − J⊥α(X, e2), e4)I

+ g̃(−AJ⊥e3
X + J Ae3 X, −e1)I + g̃(−AJ⊥e4

X + J Ae4 X, −e2)I

+ g̃(α(X, Je1) − J⊥α(X, e1), e4)K + g̃(α(X, Je2) − J⊥α(X, e2), −e3)K

+ g̃(−AJ⊥e3
X + J Ae3 X, e2)K + g̃(−AJ⊥e4

X + J Ae4 X, e1)K }

= g̃(α(X, Je1) − J⊥α(X, e1), e3)I + g̃(α(X, Je1) − J⊥α(X, e1), e4)K

for all X ∈ T M . �

A surface M in M̃ , immersed by f , is said to be superminimal if J̃∗(T M) ⊂ f #(T hZ), that is, ∇̃ J̃ = 0. For
superminimal surfaces, see [12,13,18], for example. The following fact is stated in [18].

Lemma 4.2. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then,
M is superminimal if and only if α(X, JY ) = J⊥α(X, Y ) for all X and Y ∈ T M.

Proof. Take any unit vector e1 ∈ Tx M at any point x ∈ M . Then, we can choose an orthonormal basis of Tx M̃ such
that e1, e2 defines the orientation of M , e3, e4 are normal to M and e1, . . . , e4 is compatible with the orientation of
M̃ . By Lemma 4.1, we see that α(X, Je1) = J⊥α(X, e1) for all X ∈ Tx M , if, and only if M is superminimal. �

If J̃∗ ◦ J = JZ ◦ J̃∗ (precisely, ( f# ◦ J̃ )∗ ◦ J = JZ ◦ ( f# ◦ J̃ )∗, where f# : U ( f # Q) → U Q is the bundle map),
then M is called a twistor holomorphic surface. For twistor holomorphic surfaces, see [6,12], for example.

We define a T ⊥M-valued symmetric tensor B by

B(X, Y ) = α(X, JY ) − J⊥α(X, Y ) + J⊥α(J X, JY ) + α(J X, Y ) (4.4)

for all X, Y ∈ T M . In [12], the following fact is stated in a different form.

Lemma 4.3. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then
M is twistor holomorphic if and only if B = 0.

Proof. From the definition of JZ , M is twistor holomorphic if and only if J v
∇̃X J̃ = ∇̃J X J̃ for all X ∈ T M . Since

J v(I ) = −K and J v(K ) = I , Lemma 4.1 gives the desired result. �

Let M̃ ′ be the manifold M̃ with the opposite orientation. Then both the twistor lifts of M are superminimal (resp.
twistor holomorphic) for the two immersions of M into M̃ and M̃ ′ if and only if M is totally geodesic (resp. totally
umbilic).

We define ρ(e1,e2) by

ρ(e1,e2) = g̃(J⊥α(e1, e1) − α(e1, e2), J⊥α(e2, e2) + α(e1, e2)),

where e1, e2 is an orthonormal frame on M which is compatible with the orientation of M .
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Lemma 4.4. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then
we have

‖B‖
2

= 4‖∇̃ J̃‖
2
− 8ρ(e1,e2). (4.5)

Proof. We set Bi j = B(ei , e j ) and αi j = α(ei , e j ) for i, j = 1, 2. Then we have

B11 = α12 − J⊥α11 + J⊥α22 + α12,

B12 = −J⊥(α12 − J⊥α11) − J⊥(J⊥α22 + α12),

B22 = −(α12 − J⊥α11) − (J⊥α22 + α12),

‖∇̃ J̃‖
2

= ‖α12 − J⊥α11‖
2
+ ‖α22 − J⊥α21‖

2

by Lemma 4.1 and (4.4). Therefore, from the definition of ρ(e1,e2), we obtain (4.5). �

From Lemma 4.4, we see that ρ(e1,e2) does not depend on the choice of e1, e2. Thus, we write ρ instead of ρ(e1,e2).
Note that ρ = 0 if M is superminimal, and the converse, in general, does not hold. If M is twistor holomorphic, then
we have ρ ≥ 0. Let K be the Gaussian curvature of M and K⊥ the normal curvature of T ⊥M . We have

Lemma 4.5. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then,
we have

‖∇̃ J̃‖
2

= ‖α‖
2
+ 2g̃(R̃(e1, e2)e3, e4) + 2K⊥ (4.6)

and

ρ = det(Ae3) + det(Ae4) −K⊥
− g̃(R̃(e1, e2)e3, e4). (4.7)

Proof. We can take an orthonormal basis e1, . . . , e4 such that Ae3(e1) = λe1, Ae3(e2) = µe2, Ae4(e1) = ae1 + be2,
Ae4(e2) = be1 + ce2 at each point x ∈ M . Setting αi j = α(ei , e j ) (i, j = 1, 2), we see that α11 = λe3 + ae4,
α12 = be4, α22 = µe3 + ce4. From Lemma 4.1, we see that

‖∇̃ J̃‖
2

= g̃(α12 − J⊥α11, α12 − J⊥α11) + g̃(α22 − J⊥α21, α22 − J⊥α21)

= g̃(α12, α12) − 2g̃(α12, J⊥α11) + g̃(α11, α11) + g̃(α22, α22) − 2g̃(α22, J⊥α21) + g̃(α21, α21)

= λ2
+ µ2

+ a2
+ 2b2

+ c2
+ 2b(λ − µ).

On the other hand, we have

‖α‖
2

= λ2
+ µ2

+ a2
+ 2b2

+ c2

and

K⊥
= −g̃(R⊥(e1, e2)e3, e4) = −g̃(R̃(e1, e2)e3, e4) + b(λ − µ)

by (4.3). Therefore, it holds that

‖∇̃ J̃‖
2

= ‖α‖
2
+ 2g̃(R̃(e1, e2)e3, e4) + 2K⊥.

Similarly, we obtain

ρ = −(b + λ)(b − µ) + ac = det(Ae3) + det(Ae4) −K⊥
− g̃(R̃(e1, e2)e3, e4). �

We set

κ := g̃(R̃(e1, e2)e2, e1) + g̃(R̃(e1, e2)e3, e4). (4.8)

It is easy to see that κ does not depend on the choice of the frame e1, e2, e3, e4. We note that τ = 12κ if M̃ is a
self-dual Einstein manifold with the scalar curvature τ .
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Lemma 4.6. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then,
we have

‖∇̃ J̃‖
2

= 2κ + 4‖H‖
2
− 2K + 2K⊥ (4.9)

and

K −K⊥
= κ + ρ. (4.10)

Proof. By (4.1), we obtain

2K = 2g̃(R̃(e1, e2)e2, e1) + 4‖H‖
2
− ‖α‖

2 (4.11)

and

K = g̃(R̃(e1, e2)e2, e1) + det(Ae3) + det(Ae4). (4.12)

From (4.6) and (4.11), we have (4.9), and it is easy to see (4.10) by (4.7) and (4.12). �

Lemma 4.7. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then,
we have

‖B‖
2

= 16(κ + ‖H‖
2
−K +K⊥) (4.13)

and

8‖∇̃ J̃‖
2

= ‖B‖
2
+ 16‖H‖

2. (4.14)

Proof. By (4.9), (4.10) and Lemma 4.4, we obtain (4.13). From (4.13) and (4.9), it is easy to obtain (4.14). �

Note that M is superminimal if and only if M is twistor holomorphic and minimal by (4.14) (see [12]). Let χ(M)

(resp. χ(T ⊥M)) be the Euler characteristic of M (resp. T ⊥M). From (4.13), we have

Corollary 4.8. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). If
M is compact, we have

1
2π

∫
M

κdvg +
1

2π

∫
M

‖H‖
2dvg − χ(M) + χ(T ⊥M) ≥ 0. (4.15)

The equality of (4.15) holds if and only if M is twistor holomorphic.

We note that the inequality (4.15) is a generalization of Theorem 1 in [12].

Remark 1. From (4.9), (4.10), and Lemma 4.4, we have

‖B‖
2

= 16‖H‖
2
− 16ρ. (4.16)

Let M̃ be a complex space form of constant holomorphic sectional curvature c with the orientation Ω ∧ Ω , where Ω
is the fundamental form of M̃ . If M is a Lagrangian surface in M̃ , then we have K = −K⊥. From (4.10), it follows
that ρ = 2K − (1/2)c. Hence, we have

‖H‖
2

≥ 2K −
1
2

c. (4.17)

The equality of (4.17) holds if and only if M is twistor holomorphic (see [6]).
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5. Surfaces whose twistor lifts are harmonic sections

Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). If e1, e2, e3, e4
is an orthonormal frame adapted to the orientation of M̃ such that e1, e2 defines the orientation of M and e3, e4 are
normal to M , then we have J̃ = f #(K1). Set I = f #(K2) and K = f #(K3) ∈ Γ (U ( f # Q)).

Lemma 5.1. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). Then
we have

(H ∇̃(X, Y ) J̃ )t
= g̃(−(∇ ′

Xα)(Y, Je1) + J⊥(∇ ′

Xα)(Y, e1), e3)I t

+ g̃(−(∇ ′

Xα)(Y, Je1) + J⊥(∇ ′

Xα)(Y, e1), e4)K t (5.1)

on J̃ (M) for all X, Y ∈ T M, where I t and K t are the tangential lifts of I and K .

Proof. We may assume that (∇e1)x = 0, (∇e2)x = 0, (∇⊥e3)x = 0 and (∇⊥e4)x = 0 at x ∈ M . From Lemma 4.1,
it follows that at x ∈ M

H ∇̃(X, Y ) J̃ = g̃(−(∇ ′

Xα)(Y, Je1) + J⊥(∇ ′

Xα)(Y, e1), e3)I + g̃(−(∇ ′

Xα)(Y, Je1) + J⊥(∇ ′

Xα)(Y, e1), e4)K

− g̃(α(Y, Je1) − J⊥α(Y, e1), e3)∇̃X I − g̃(α(Y, Je1) − J⊥α(Y, e1), e4)∇̃X K

for all X , Y ∈ Γ (T M). Since g̃(∇̃X I, K )x = −g̃(∇̃X K , I )x = 0, we have (5.1). �

We define a T ⊥M-valued 1-form δα by

(δα)(X) = −

2∑
i=1

(∇ ′
ei
α)(ei , X)

for all X ∈ T M , where e1, e2 is an orthonormal frame of M . From (2.2) and Lemma 5.1, we have

Theorem 5.2. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). The
twistor lift J̃ is a harmonic section if and only if it holds that (δα)(J X) = J⊥(δα)(X) for all X ∈ T M.

Obviously, the twistor lift of a superminimal surface is a harmonic section. In addition, if M is compact, it attains
its minimum value Vol(M) for the restricted energy functional. If M has the parallel second fundamental form, then
the twistor lift of M is a harmonic section. If (H ∇̃(X, Y ) J̃ )t

= 0 on J̃ (M) for all X , Y ∈ Γ (T M), then J̃ is a
harmonic section. By Lemma 5.1, we see that

(H ∇̃(X, Y ) J̃ )t
= 0 (5.2)

on J̃ (M) for all X , Y ∈ Γ (T M) if and only if

(∇ ′

Xα)(Y, J Z) = J⊥(∇ ′

Xα)(Y, Z) (5.3)

for all X , Y , Z ∈ Γ (T M). We define ∇
′ B by

(∇ ′

X B)(Y, Z) = ∇
⊥

X B(Y, Z) − B(∇X Y, Z) − B(Y, ∇X Z)

for all X , Y , Z ∈ Γ (T M). As we noted earlier, M is a superminimal surface in M̃ if and only if H = 0 and B = 0.
Correspondingly, we have the following theorem.

Theorem 5.3. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃). The
twistor lift J̃ satisfies (5.2) on J̃ (M) for all X, Y ∈ Γ (T M) if and only if ∇

⊥ H = 0 and ∇
′ B = 0.

Proof. Assume that the twistor lift J̃ satisfies (5.2) for all X , Y ∈ Γ (T M). From (5.3), we have

2∇
⊥

X H = (∇ ′

Xα)(u, u) + (∇ ′

Xα)(Ju, Ju) = 0,
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where u is a unit vector on M , and

(∇ ′

X B)(Y, Z) = (∇ ′

Xα)(Y, J Z) − J⊥(∇ ′

Xα)(Y, Z) + J⊥(∇ ′

Xα)(JY, J Z) + (∇ ′

Xα)(JY, Z)

= 0

for all X , Y , Z ∈ T M . Conversely, we assume that ∇
⊥ H = 0 and ∇

′ B = 0. Take any tangent vector Y at any point
x ∈ M and let Ỹ be a vector field defined on a neighborhood of x ∈ M such that Ỹx = Y and (∇Ỹ )x = 0. From
∇

⊥ H = 0, we have

(∇ ′

Xα)(Y, Y ) + (∇ ′

Xα)(JY, JY ) = 0

for all X ∈ Tx M . Therefore, by polarization, it holds that

(∇ ′

Xα)(Y, Z) + (∇ ′

Xα)(JY, J Z) = 0 (5.4)

for all X , Y , Z ∈ Tx M . On the other hand, from ∇
′ B = 0, we obtain

(∇ ′

Xα)(Y, J Z) − J⊥(∇ ′

Xα)(Y, Z) + J⊥(∇ ′

Xα)(JY, J Z) + (∇ ′

Xα)(JY, Z) = 0 (5.5)

for all X , Y , Z ∈ Tx M . From (5.4) and (5.5), we obtain (5.3). �

Let (P, D) (resp. (P̃, D̃)) be a smooth manifold P (resp. P̃) with a (not necessarily Levi-Civita) connection D
(resp. D̃). We say that a smooth map F : (P, D) → (P̃, D̃) from (P, D) to (P̃, D̃) is a totally geodesic map if

D̃X F∗(Y ) = F∗(DX Y )

for all X , Y ∈ Γ (T P). If the curvature form RQ of Q vanishes, and if M satisfies ∇
⊥ H = 0 and ∇

′ B = 0, then the
twistor lift J̃ is a totally geodesic embedding from Lemma 2.3.

Remark 2. An immersion F : (P, D) → (P̃, D̃) is said to be an affine immersion with transversal bundle N if
it holds that F#(T P̃) = T P ⊕ N and the induced connection of the pull back connection F# D̃ equals to D with
respect to the decomposition F#(T P̃) = T P ⊕N . If the curvature form RQ of Q vanishes, then the twistor lift J̃ of
f : M → M̃ is an affine embedding with transversal bundle J̃ #( f #(T vZ)). In [17], sections of sphere bundles are
studied from the viewpoint of affine differential geometry. We refer to [19] for affine immersions.

We define δB by

(δB)(X) = −

2∑
i=1

(∇ ′
ei

B)(ei , X)

for all X ∈ T M , where e1, e2 is an orthonormal frame of M . We have the following corollary.

Corollary 5.4. Let (M, g) be an oriented surface in an oriented four-dimensional Riemannian manifold (M̃, g̃) such
that

R̃(T M, T M)(T M) ⊂ T M. (5.6)

Then, the following statements are mutually equivalent:
(1) The twistor lift J̃ is a harmonic section.
(2) The mean curvature vector H satisfies ∇

⊥

J X H = J⊥
∇

⊥

X H for all X ∈ T M.
(3) δB = 0.

Proof. From (4.2) and (5.6), it follows that

(∇ ′

Xα)(Y, Z) = (∇ ′

Y α)(X, Z)

for all X , Y , Z ∈ T M . Therefore, we have

−(δB)(X) = (∇ ′
e1

α)(e1, J X) − J⊥(∇ ′
e1

α)(e1, X) + J⊥(∇ ′
e1

α)(Je1, J X) + (∇ ′
e1

α)(Je1, X)

+ (∇ ′

Je1
α)(Je1, J X) − J⊥(∇ ′

Je1
α)(Je1, X) − J⊥(∇ ′

Je1
α)(e1, J X) − (∇ ′

Je1
α)(e1, X)

= −(δα)(J X) + J⊥(δα)(X)
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Fig. 1. Polynomial spiral with the curvature function 2u.

for all X ∈ T M . Then, (1) is equivalent to (3). Since it holds that ∇
⊥

X H = −(δα)(X) for X ∈ T M , we see that (1) is
equivalent to (2). �

The normal connection ∇
⊥ on the normal bundle defines a holomorphic structure such that ζ ∈ Γ (T ⊥M) is

holomorphic if and only if it holds that ∇
⊥

J Xζ = J⊥
∇

⊥

X ζ for all X ∈ T M . Therefore, the statement (2) in Corollary 5.4
is equivalent to the holomorphicity of the mean curvature vector H ∈ Γ (T ⊥M). In the case where M̃ is a space form
of constant curvature, or M is a Lagrangian surface in a complex space form M̃ of constant holomorphic sectional
curvature, the condition (5.6) is satisfied. If M is an invariant surface in the complex space form M̃ , then the twistor
lift is a harmonic section. In fact, such surfaces satisfy (5.6) and H = 0. In [7,11], the usual harmonicities of twistor
lifts are considered.

Example 1. Let γi : Ii → R2 be a smooth curve with arc length parameter in R2, where Ii is an open interval
(i = 1, 2). We denote the tangent vector of γi by Ti , and the normal vector by Ni such that det(Ti Ni ) = 1 (i = 1, 2).
We consider the product surface M in R2

× R2
' R4 given by (s, t) 7→ (γ1(s), γ2(t)). Take the orthonormal frame

e1 = (T1, 0), e2 = (0, T2), e3 =
1

√
2
(N1, N2), e4 =

1
√

2
(N1, −N2).

By a straightforward calculation, we have

H = −
1

2
√

2
(κ1 + κ2)e3 −

1

2
√

2
(κ1 − κ2)e4,

where κi is the curvature of γi . Then the twistor lift of M is a harmonic section if and only if

d
ds

κ1 =
d
dt

κ2. (5.7)

Since two sides in (5.7) depend on different variables, we have κi (u) = cu + di (i = 1, 2), where c, d1, d2 are
constants. A plane curve is called a polynomial spiral if its curvature function is a polynomial function of the arc
length parameter. Therefore the twistor lift of the product surface M in R4 is a harmonic section if and only if M is
the product surface of polynomial spirals γ1 and γ2 such that κi (u) = cu + di (i = 1, 2). In particular, if c = 0, then
the polynomial spiral is an open part of a circle or a line. Fig. 1 shows the polynomial spiral with c 6= 0. If c 6= 0, then
‖∇̃ J̃‖

2 is not constant. In Section 6, we consider compact surfaces such that the twistor lifts are harmonic sections
and the energy densities of the twistor lifts are constant.

Remark 3. Let M̃ ′ be the manifold M̃ with the opposite orientation. Then, we see that both the twistor lifts for two
immersions into M̃ and M̃ ′ satisfy (5.2) if and only if M has the parallel second fundamental form. Similarly, both
twistor lifts are harmonic sections if and only if δα = 0.
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Let M̃ be a four-dimensional hyperkähler manifold and I1, I2, I3 a hyperkähler structure on M̃ . If the orientation
of M̃ is given by

−

3∑
i=1

ΩIi ∧ ΩIi ,

then we have I1, I2, I3 ∈ Γ (Z), where ΩIi is the two form defined by ΩIi (X, Y ) = g̃(Ii X, Y ) for X , Y ∈ T M (i =

1, 2, 3). The twistor space Z of M̃ is M̃ × S2(1), where S2(1) is the two dimensional unit sphere. Let p̂ : Z → S2(1)

be the projection. For a surface M in M̃ , we set J̃ ′
:= p̂ ◦ J̃ (= p̂ ◦ f# ◦ J̃ , precisely). We have the following theorem:

Theorem 5.5. Let (M, g) be an oriented surface in a four-dimensional hyperkähler manifold (M̃, g̃). Then the
following statements are mutually equivalent:

(1) The twistor lift J̃ is a harmonic section.
(2) The twistor lift J̃ is a harmonic map in the usual sense.
(3) J̃ ′ is a harmonic map in the usual sense.

Proof. It is trivial that (1) is equivalent to (2) in view of Lemma 2.4. The map J̃ ′ is explicitly given by

J̃ ′
= (g̃(I1, J̃ ), g̃(I2, J̃ ), g̃(I3, J̃ )).

Let D be the Levi-Civita connection on R3 with respect to the standard metric and ∇̄ the induced connection on S2(1).
Since

J̃ ′
∗(X) = (g̃(I1, ∇̃X J̃ ), g̃(I2, ∇̃X J̃ ), g̃(I3, ∇̃X J̃ ))

for all X ∈ T M , we have

DX J̃ ′
∗Y = (g̃(I1, ∇̃X ∇̃Y J̃ ), g̃(I2, ∇̃X ∇̃Y J̃ ), g̃(I3, ∇̃X ∇̃Y J̃ ))

for all X , Y ∈ Γ (T M). Therefore it holds that

∇̄X J̃ ′
∗Y = (g̃(I1, ∇̃X ∇̃Y J̃ ), g̃(I2, ∇̃X ∇̃Y J̃ ), g̃(I3, ∇̃X ∇̃Y J̃ )) − g̃( J̃ , ∇̃X ∇̃Y J̃ ) J̃ ′

for all X , Y ∈ Γ (T M). Hence, the torsion τ( J̃ ′) of J̃ ′ is given by

τ( J̃ ′) = (g̃(I1, 1̄
∇̃ J̃ ), g̃(I2, 1̄

∇̃ J̃ ), g̃(I3, 1̄
∇̃ J̃ )) − g̃( J̃ , 1̄∇̃ J̃ ) J̃ ′

= (g̃(I1, 1̄
∇̃ J̃ − ‖∇̃ J̃‖ J̃ ), g̃(I2, 1̄

∇̃ J̃ − ‖∇̃ J̃‖ J̃ ), g̃(I3, 1̄
∇̃ J̃ − ‖∇̃ J̃‖ J̃ )).

Then, we see that the twistor lift J̃ is a harmonic section if and only if J̃ ′ is a harmonic map in the usual sense. �

For a surface M in a four-dimensional hyperkähler manifold M̃ , the degree of the map J̃ ′
: M → S2(1) is denoted

by deg( J̃ ′). The degree deg( J̃ ′) is related to ρ as follows:

Lemma 5.6. Let (M, g) be an oriented compact surface in a four-dimensional hyperkähler manifold (M̃, g̃). Then
we have∫

M
ρ dvg = 4π deg( J̃ ′).

Proof. Let ω̄ be the standard volume element on S2(1). Set ω̄′
= 1/(4π)ω̄. Since ( J̃ ′∗ω̄)(e1, e2) = −g̃(α(e1, e2) −

J⊥α(e1, e1), J⊥α(e2, e2) + α(e1, e2)) = ρ for an orthonormal frame e1, e2 on M , which is compatible with the
orientation, it follows that

deg( J̃ ′) =

∫
M

J̃ ′∗ω̄′
=

1
4π

∫
M

( J̃ ′∗ω̄)(e1, e2)dvg =
1

4π

∫
M

ρ dvg

from Lemma 4.1. �
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Let M be a compact twistor holomorphic surface in a four-dimensional hyperkähler manifold M̃ . Since the
projection p̂ : Z → S2(1) is holomorphic, the map J̃ ′

: M → S2(1) is holomorphic. If M is not superminimal,
then the superminimal points of M coincide with the branch points of J̃ ′. Let p1, . . . , pl be the branch points of J̃ ′

and r1, . . . , rl their degrees of ramification. From the Riemann–Hurwitz relation, we have

χ(M) +

l∑
i=1

ri = 2 deg( J̃ ′). (5.8)

On the other hand, it holds that

2 deg( J̃ ′) = χ(M) − χ(T ⊥M) (5.9)

by Lemma 5.6 and (4.10). Then, we have

χ(T ⊥M) = −

l∑
i=1

ri (≤0)

from (5.8) and (5.9). We refer to [12] for the case when M̃ = R4. In connection with the fact that χ(T ⊥M) ≤ 0 for a
twistor holomorphic surface, we have

Corollary 5.7. Let (M, g) be an oriented compact surface with genus q in a hyperkähler manifold (M̃, g̃). If the
twistor lift J̃ is a harmonic section, and

2(1 − 2q) ≥ χ(T ⊥M),

then M is a twistor holomorphic surface in M̃.

Proof. From Lemma 5.6 and (4.10), we have 4π deg( J̃ ′) = 4π(1 − q) − 2πχ(T ⊥M). Then, it holds that

deg( J̃ ′) = (1 − q) −
1
2
χ(T ⊥M) ≥ (1 − q) −

1
2

· 2(1 − 2q) = q.

By Theorem 5.5, J̃ ′ is a harmonic map with deg( J̃ ′) ≥ q. Every harmonic map ϕ from an oriented surface to S2(1)

with deg(ϕ) ≥ q is holomorphic [10]. Then, we have J̃ ′
∗ J = J̄ J̃ ′

∗, where J̄ is the complex structure on S2(1). Because
of p̂∗ JZ = J̄ p̂∗, it holds that

p̂∗ JZ J̃∗ = J̄ p̂∗ J̃∗ = J̄ J̃ ′
∗ = J̃ ′

∗ J = p̂∗ J̃∗ J.

Therefore, JZ J̃∗(X) − ( J̃∗ J (X)) is horizontal, that is, JZ (∇̃X J̃ ) = ∇̃J X J̃ for all X ∈ T M . �

Remark 4. From Lemmas 4.4 and 5.6, we can see a quantization phenomenon

1
8π

∫
M

‖∇̃ J̃‖
2dvg −

1
32π

∫
M

‖B‖
2dvg = deg( J̃ ′) ∈ Z

for surfaces in four-dimensional hyperkähler manifolds. In particular, the twistor lift for any twistor holomorphic
surface satisfies

1
8π

∫
M

‖∇̃ J̃‖
2dvg ∈ N ∪ {0}.

If M̃ = R4 and M is a compact twistor holomorphic surface such that

1
8π

∫
M

‖∇̃ J̃‖
2dvg = 1, (5.10)

then M is the standard sphere. In fact, if Eq. (5.10) holds, then we have deg( J̃ ′) = 1. From (4.9), (4.10), and
Lemma 5.6, we obtain∫

M
‖H‖

2dvg = 4π.

Therefore, M is the standard sphere (see [8]).
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6. The energy density of the twistor lifts for surfaces in Euclidean space

The vertical component

1
2

∫
M

‖∇̃ J̃‖
2dvg

(
resp.

1
2
‖∇̃ J̃‖

2
)

of energy E( J̃ ) (resp. energy density) for the twistor lift is called the vertical energy (resp. the vertical energy density).
We see that M is a superminimal surface in M̃ if and only if ‖∇̃ J̃‖

2
= 0. Hence, it is natural to consider the following

problem : Assume that M̃ does not admit any compact superminimal surface. Find a geometric constant C > 0 such
that ∫

M
‖∇̃ J̃‖

2dvg ≥ C

and characterize the equality case. In this section, we consider this problem in the case when M̃ is the four-
dimensional Euclidean space R4, and study surfaces in R4 such that the twistor lifts are harmonic sections, and
the vertical energy density of the twistor lifts are constant. Let 1 be the Laplacian acting on the smooth functions on
M and λi (M) the i-th eigenvalues of 1. The set of all nonzero eigenvalues of 1 is denoted by σ(1). We then have
the following theorem.

Theorem 6.1. Let M be an oriented connected compact surface in R4. Then we have∫
M

‖∇̃ J̃‖
2dvg ≥ λ1(M)Vol(M).

The equality holds if and only if M is the standard sphere in R4.

To prove Theorem 6.1, we need the following lemma:

Lemma 6.2. Let (M, g) be an oriented compact surface in an oriented four-dimensional Riemannian manifold (M̃, g̃)

of constant curvature c. If χ(T ⊥M) = 0, then the following statements are mutually equivalent:
(1) M is twistor holomorphic.
(2) M is totally umbilic.

Proof. Assume that M is twistor holomorphic. Since χ(T ⊥M) = 0, we have

c
2π

Vol(M) +
1

2π

∫
M

‖H‖
2dvg − χ(M) = 0

by Corollary 4.8. Because M̃ has the constant curvature c, M̃ is self-dual with respect to both orientations. Hence, we
see that M is twistor holomorphic with respect to the opposite orientation of M̃ by Corollary 4.8, that is, M is twistor
holomorphic relative to both orientations of M̃ . Then, M is totally umbilic. The converse is trivial by Lemma 4.3. �

Here, we give the proof of Theorem 6.1.

Proof of Theorem 6.1. From (4.14), we have∫
M

‖∇̃ J̃‖
2dνg =

1
8

∫
M

‖B‖
2vg + 2

∫
M

‖H‖
2vg

≥ 2
∫

M
‖H‖

2vg

≥ λ1(M)Vol(M).

To obtain the latter inequality, we use a result of [21]. By Lemma 4.3 and [21], the equality holds if and only if M
is twistor holomorphic and is a minimal hypersurface in a hypersphere of certain radius in R4. Since a hypersphere
is totally umbilic in R4, we have χ(T ⊥M) = 0. Therefore, by Lemma 6.2, M is totally umbilic, that is, M is the
standard sphere in R4. �
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Theorem 6.1 leads to the study of a relation between the energy (density) and σ(1) for a surface in R4. For the
energy density of the twistor lift J̃ , if J̃ is a harmonic section and ‖∇̃ J̃‖

2 is constant, then ‖∇̃ J̃‖
2 is an eigenvalue of

the rough Laplacian 1̄∇̃ . In particular, if the ambient space is hyperkählerian, then ‖∇̃ J̃‖
2 is an intrinsic quantity of

M . We have the following lemma:

Lemma 6.3. Let (M, g) be an oriented compact surface in a four dimensional hyperkähler manifold (M̃, g̃). If J̃ is a
harmonic section and ‖∇̃ J̃‖

2 is constant, then ‖∇̃ J̃‖
2

∈ σ(1)∪{0}. In particular, if J̃ is a harmonic section, ‖∇̃ J̃‖
2

is constant and ‖∇̃ J̃‖
2 < λ1(M), then M is superminimal.

Proof. Since M̃ is a hyperkähler manifold, there exists a parallel complex structure I ∈ Γ (Z) such that g̃(I, J̃ ) 6= 0.
We set a := g̃(I, J̃ ). It holds that 1a = ‖∇̃ J̃‖

2a, since J̃ is a harmonic section. Then, a is an eigenfunction of 1 and
‖∇̃ J̃‖

2
∈ σ(1) ∪ {0}. If ‖∇̃ J̃‖

2 < λ1(M), then ∇̃ J̃ = 0, that is, M is superminimal. �

Here, we give examples such that J̃ is a harmonic section and ‖∇̃ J̃‖
2 is constant. Let Sk(c) be the k-dimensional

sphere with radius c.

Example 2. λ1(M) = ‖∇̃ J̃‖
2: The totally umbilic surface f : S2(c) → R4 satisfies the conditions that the twistor

lift J̃ is a harmonic section, ‖∇̃ J̃‖
2 is constant, and λ1(S2(c)) = ‖∇̃ J̃‖

2.

Next, we consider the canonical product surface fa,b : S1(a)× S1(b) → R4(a, b > 0). We define Fa,b : R2
→ R4

by

Fa,b(x, y) =

(
a cos

x
a

, a sin
x
a

, b cos
y
b
, b sin

y
b

)
.

Let Λa,b be the lattice of R2, which is the Z-span by (2πa, 0) and (0, 2πb), and set T 2
a,b := R2/Λa,b ∼= S1(a)×S1(b).

Then, the immersion Fa,b induces fa,b. The twistor lift J̃ is a harmonic section (see Example 1). Moreover, we obtain

‖∇̃ J̃‖
2

=
1
a2 +

1
b2 .

On the other hand, the dual lattice Λ∗

a,b of Λa,b is the Z-span by (a′, 0) and (0, b′), where a′
= 1/(2πa) and

b′
= 1/(2πb). The spectrum set of the Laplacian of Ta,b is {4π2

‖x‖
2

| x ∈ Λ∗

a,b}. We note that fa,b is not twistor
holomorphic, and ρ = 0.

Example 3. λ2(M) = ‖∇̃ J̃‖
2: It is easy to see that λ2(T 2

a,a) = 2/a2 (see Fig. 2). Then, fa,a satisfies the identity
λ2(T 2

a,a) = ‖∇̃ J̃‖
2.

Example 4. λi (M) = ‖∇̃ J̃‖
2 (i ≥ 3): If a 6= b, we may assume a > b. Set j = [b′/a′

], where [x] stands for the
maximum integer which does not exceed x ∈ R. Then, we have λi (T 2

a,b) = 1/a2
+ 1/b2, where i = j + 1 if b′

= ja′,
and i = j + 2 if b′

6= ja′ (see Fig. 2). Then, fa,b satisfies the identity λi (T 2
a,b) = ‖∇̃ J̃‖

2.

These examples are spherical surfaces; that is, they are contained in a hypersphere in R4. All spherical surfaces
have vanishing normal curvatures. We obtain the following theorem:

Theorem 6.4. Let M be an oriented, compact, and connected surface in R4 with∫
M

‖H‖
2K⊥dvg = 0.

Assume that J̃ is a harmonic section, and ‖∇̃ J̃‖
2 is constant. Then, we have the following:

(1) If ‖∇̃ J̃‖
2

= λ1(M), then M is the standard sphere S2(a) in R4.
(2) If ‖∇̃ J̃‖

2
= λ2(M), then M is the product surface S1(a) × S1(a) in R4.

(3) If ‖∇̃ J̃‖
2

= λi (M) (i ≥ 3), then M is the product surface S1(a) × S1(b) in R4, with a 6= b.

For proving Theorem 6.4, we need the following lemmas.



1564 K. Hasegawa / Journal of Geometry and Physics 57 (2007) 1549–1566

Fig. 2. Eigenvalues of the Laplacian on Ta,b .

Lemma 6.5. Let (M, g) be an oriented surface in (M̃, g̃) such that

R̃(T M, T M)T M ⊂ T M.

If the twistor lift J̃ of M is a harmonic section, then we have

1̄∇
⊥

H = −K⊥ H, (6.1)

where 1̄∇
⊥

is the rough Laplacian of the normal connection ∇
⊥.

Proof. By Corollary 5.4, the mean curvature vector H is a holomorphic section of T ⊥M . For any local unit vector
field u of M , we have

1̄∇
⊥

H = −∇
⊥
u ∇

⊥
u H + ∇

⊥

∇uu H − ∇
⊥

Ju∇
⊥

Ju H + ∇
⊥

∇Ju Ju H

= H∇
⊥

(u, u)H + J⊥ H∇
⊥

(Ju, u)H. (6.2)

We replace u by Ju in (6.2). Then, it follows that

1̄∇
⊥

H = H∇
⊥

(Ju, Ju)H − J⊥ H∇
⊥

(u, Ju)H. (6.3)

Using (6.2) and (6.3), we have

21̄∇
⊥

H = 1̄∇
⊥

H + J⊥ H∇
⊥

(Ju, u)H − J⊥ H∇
⊥

(u, Ju)H.

Then, we obtain 1̄∇
⊥

H = R⊥(u, Ju)J⊥ H . �

Lemma 6.6. Let (M, g) be an oriented compact surface in (M̃, g̃). We assume∫
M

‖H‖
2K⊥dvg = 0

and R̃(T M, T M)T M ⊂ T M. Then, the twistor lift J̃ is a harmonic section if and only if ∇
⊥ H = 0.

Proof. Assume that J̃ is a harmonic section. From Lemma 6.5, it follows that∫
M

g̃(∇⊥ H, ∇⊥ H)dvg = 0.

Then the mean curvature vector is parallel with respect to ∇
⊥. The converse is trivial. �

Lemma 6.7. Let (M, g) be an oriented surface in the real space form (M̃, g̃), and let M̄ be a totally umbilic
hypersurface in M̃. Assume that M is contained in M̄, ‖∇̃ J̃‖

2 is constant and the twistor lift J̃ of M in M̃ is a
harmonic section. Then, M is an isoparametric surface in M̄.
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Proof. Let ξ be the unit normal vector field on M in M̄ and η the unit normal vector field on M̄ in M̃ . We set e3 = ξ

and e4 = η|M . The mean curvature vector on M in M̄ is denoted by H̄ . Then, we have H = H̄ + ν2e4, where ν is
the mean curvature function on M̄ in M̃ . Since M̄ is totally umbilic in M̃ , we see that ∇

⊥

X e3 = 0, ∇
⊥

X e4 = 0 and ν is
constant. Hence, we have

∇
⊥

X H = ∇
⊥

X H̄ = ∇̄
⊥

X H̄

for all X ∈ T M , where ∇̄
⊥ is the normal connection of M in M̄ . Therefore, J⊥

∇̄
⊥

X H̄ is proportional to e4. By
Corollary 5.4, J̃ is a harmonic section if, and only if ∇̄

⊥

X H̄ = 0 for all X ∈ T M . Let λ, µ be the principal curvatures
of M in M̄ . We see that λ + µ is constant by ∇̄

⊥ H̄ = 0. From (4.6), we have

‖∇̃ J̃‖
2

= λ2
+ µ2

+ 2ν2.

Since ‖∇̃ J̃‖
2 is constant, λ2

+ µ2 is also constant. Therefore, M is an isoparametric surface in M̄ . �

Using Lemmas 6.6 and 6.7, we can give the proof of Theorem 6.4.

Proof of Theorem 6.4. Since J̃ is a harmonic section and M is compact, we have ∇
⊥ H = 0 by Lemma 6.6.

Therefore, by [24], M is one of the following surfaces: (1) M is a minimal surface in R4, (2) M is a constant mean
curvature hypersurface in R3 or S3(c). Since M is compact, the first case does not occur. By Lemma 6.7, M is an
isoparametric hypersurface in R3 or S3(c). Since M is compact, we obtain the desired conclusion. �

Consider the totally umbilic surface M with radius r in S4(1). Then, we see that ‖∇̃ J̃‖
2

6∈ σ(1). In fact, we
have ‖∇̃ J̃‖ = 2(1 − r2)/r2 and λi (M) = i(i + 1)/r2. It is easy to see that there is no positive integer i such that
2(1 − r2)/r2

= i(i + 1)/r2. Therefore, in Theorem 6.4, the ambient space R4 cannot be replaced by S4(1).
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